Single Collateral Reconstructions Reveal Distinct Phases of Corticospinal Remodeling after Spinal Cord Injury

نویسندگان

  • Claudia Lang
  • Xiaoli Guo
  • Martin Kerschensteiner
  • Florence M. Bareyre
چکیده

BACKGROUND Injuries to the spinal cord often result in severe functional deficits that, in case of incomplete injuries, can be partially compensated by axonal remodeling. The corticospinal tract (CST), for example, responds to a thoracic transection with the formation of an intraspinal detour circuit. The key step for the formation of the detour circuit is the sprouting of new CST collaterals in the cervical spinal cord that contact local interneurons. How individual collaterals are formed and refined over time is incompletely understood. METHODOLOGY/PRINCIPAL FINDINGS We traced the hindlimb corticospinal tract at different timepoints after lesion to show that cervical collateral formation is initiated in the first 10 days. These collaterals can then persist for at least 24 weeks. Interestingly, both major and minor CST components contribute to the formation of persistent CST collaterals. We then developed an approach to label single CST collaterals based on viral gene transfer of the Cre recombinase to a small number of cortical projection neurons in Thy1-STP-YFP or Thy1-Brainbow mice. Reconstruction and analysis of single collaterals for up to 12 weeks after lesion revealed that CST remodeling evolves in 3 phases. Collateral growth is initiated in the first 10 days after lesion. Between 10 days and 3-4 weeks after lesion elongated and highly branched collaterals form in the gray matter, the complexity of which depends on the CST component they originate from. Finally, between 3-4 weeks and 12 weeks after lesion the size of CST collaterals remains largely unchanged, while the pattern of their contacts onto interneurons matures. CONCLUSIONS/SIGNIFICANCE This study provides a comprehensive anatomical analysis of CST reorganization after injury and reveals that CST remodeling occurs in distinct phases. Our results and techniques should facilitate future efforts to unravel the mechanisms that govern CST remodeling and to promote functional recovery after spinal cord injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.

After an incomplete spinal cord injury (SCI), partial recovery of locomotion is accomplished with time. Previous studies have established a functional link between extension of axon collaterals from spared spinal tracts and locomotor recovery after SCI, but the tissular signals triggering collateral sprouting have not been identified. Here, we investigated whether axonal degeneration after SCI ...

متن کامل

Optical Imaging of the Motor Cortex Following Antidromic Activation of the Corticospinal Tract after Spinal Cord Injury

Spinal cord injury (SCI) disrupts neuronal networks of ascending and descending tracts at the site of injury, leading to a loss of motor function. Restoration and new circuit formation are important components of the recovery process, which involves collateral sprouting of injured and uninjured fibers. The present study was conducted to determine cortical responses to antidromic stimulation of ...

متن کامل

Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery.

In the current study we examined the effects of training in adult rats with a cervical spinal cord injury (SCI). One group of rats received 6 weeks of training in a single pellet reaching task immediately after injury, while a second group did not receive training. Following this period changes in cortical levels of BDNF and GAP-43 were analysed in trained and untrained animals and in a group w...

متن کامل

Remodeling Brain Activity by Repetitive Cervicothoracic Transspinal Stimulation after Human Spinal Cord Injury

Interventions that can produce targeted brain plasticity after human spinal cord injury (SCI) are needed for restoration of impaired movement in these patients. In this study, we tested the effects of repetitive cervicothoracic transspinal stimulation in one person with cervical motor incomplete SCI on cortical and corticospinal excitability, which were assessed via transcranial magnetic stimul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012